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The nonlinear equations of mathematical physics are major subjects in physical science [1].
Exact solutions for these equations play an important role in many phenomena in physics such
as fluid mechanics, hydrodynamics, Optics, Plasma physics and so on. Recently many new
approaches for finding these solutions have been proposed, for example, tanh - sech method
[2]-[4], extended tanh - method [5-7], sine - cosine method [8]-[10], homogeneous balance method
[11]and [12], Jacobi elliptic function method [13]-[16], F-expansion method [17]-[19], exp-function

method [20]-[21], trigonometric function series method [22], (G
′

G )− expansion method [23]-[26],
the modified simple equation method [27]-[32] and so on.
In the present paper, we shall proposed a new method which is called exp-ϕ(ξ)-expansion method
to seek traveling wave solutions of nonlinear evolution equations. The main ideas of the proposed
method are that the traveling wave solutions of nonlinear evolution equation can be expressed
by a polynomial in exp-ϕ(ξ).
The paper is organized as follows: In section 2, we give the description of exp-ϕ(ξ)-expansion
method. In section 3, we use this method to find the exact solutions of the nonlinear evolution
equations pointed out above and some figures of our results are drawn. In section 4, conclusion
are given.

II. Description of the Exp(−'(»))-expansion Method

Consider the following nonlinear evolution equation

F (u, ut, ux, utt, uxx, ....) = 0, (2.1)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest order derivatives
and nonlinear terms are involved. In the following,we give the main steps of this method
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Step 1. We use the wave transformation

u(x, t) = u(ξ), ξ = x− ct, (2.2)

where c is a positive constant, to reduce Eq.(1)to the following ODE:

P (u, u′, u′′, u′′′, .....) = 0, (2.3)

where P is a polynomial in u(ξ) and its total derivatives,while ′ = d
dξ

′
.

Step 2. Suppose that the solution of ODE(2.3) can be expressed by a polynomial in exp(−ϕ(ξ))
as follows

u(ξ) = αm (exp(−ϕ(ξ)))m + ....., αm 6= 0, (2.4)

where ϕ(ξ) satisfies the ODE in the form

ϕ′(ξ) = exp(−ϕ(ξ)) + µexp(ϕ(ξ)) + λ, (2.5)

the solutions of ODE (2.5) are
when λ2 − 4µ > 0, µ 6= 0,

ϕ(ξ) = ln

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2 (ξ + C1)

)
− λ

2µ

 , (2.6)

when λ2 − 4µ > 0, µ = 0,

ϕ(ξ) = −ln
(

λ

exp (λ (ξ + C1))− 1

)
, (2.7)

when λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

ϕ(ξ) = ln

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
, (2.8)

when λ2 − 4µ = 0, µ = 0, λ = 0,
ϕ(ξ) = ln (ξ + C1) , (2.9)

when λ2 − 4µ < 0,

ϕ(ξ) = ln


√

4µ− λ2 tan
(√

4µ−λ2
2 (ξ + C1)

)
− λ

2µ

 , (2.10)

where am, ...., λ, µ are constants to be determined later,
Step 3. Substitute Eq.(2.4) along Eq.(2.5) into Eq.(2.3) and collecting all the terms of the same
power exp (−mϕ(ξ)) and equating them to zero, where the positive integer m can be determined
by considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in ODE(2.3). We obtain a system of algebraic equations, which can be solved
by Maple or Mathematica to get the values of αi.
Step 4. substituting these values and the solutions of Eq.(2.5) into Eq.(2.3) we obtain the exact
solutions of Eq.(2.3).

a) Example1. The nonlinear Burger equation with power law nonlinearity.

This equation is well known [33] and has the form:

vt + a(vn)x + bvxx = 0, n > 1, (2.11)
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where a and b are nonzero constants. The solutions of Eq.(2.11) have been discussed, the exact
solitary wave solutions, the periodic solutions and the rational function solution are obtaines in
[33] by means of the extended (G

′

G ) -expansion method. Let us now solve Eq.(2.11) using the
exp(−ϕ(ξ))-expansion method. To this end, we use the wave transformation (2.2) to reduce
Eq.(2.11) to the ODE and integrating the equation with zero constant of integration:

− cv + avn + bv′ = 0. (2.12)

Balancing v′ with vn yields m = 1
n−1 , n > 1. Using the transformation

v = u
1

n−1 , (2.13)

to reduce Eq.(12) to the following equation

− c(n− 1)u+ a(n− 1)u2 + bu
′

= 0, (2.14)

where u is a new function of ξ. Balancing u′ with u2 yields m = 1. Consequently, Eq.(2.1) has
the formal solution

u = α0 + α1exp(−ϕ), (2.15)

where α0 and α1 are constants to be determined, such that α1 6= 0. It is easy to see that

u′ = −α1exp(−2ϕ)− µα1 − λα1exp(−ϕ), (2.16)

substituting Eq.(2.15) and its derivatives in Eq.(2.1) and equating the coefficient of different
power’s ofexp(−ϕ(ξ)) to zero, we get

a(n− 1)α2
1 − bα1 = 0, (2.17)

− v(n− 1)α1 + a(n− 1)(2α0α1)− bλα1 = 0, (2.18)

− cα0(n− 1) + a(n− 1)α2
0 − bµα1 = 0, (2.19)

Eqs.(2.1)-(2.19) yield

α0 =
bλ

2a(n− 1)
+

v

2a
, α1 =

b

a(n− 1)
. (2.20)

thus the solution is

u =
bλ

2a(n− 1)
+

v

2a
+

b

a(n− 1)
exp(−ϕ) (2.21)

Let us now discuse the following case:

Case 1. if λ2 − 4µ > 0, µ 6= 0. then we deduce from Eq.(2.21) that

u(ξ) =
bλ

2a(n− 1)
+

v

2a
+

2bµ

a(n− 1)

[
−
√
λ2 − 4µtanh

√
λ2−4µ
2 (ξ + c1)− λ

] (2.22)

Case 2. if λ2 − 4µ > 0, µ = 0. then we deduce from Eq. that

u(ξ) =
bλ

2a(n− 1)
+

v

2a
+

2bµ

a(n− 1) [exp(λξ + c1)− 1]
. (2.23)

Case 3. if λ2 − 4µ = 0, µ 6= 0, λ 6= 0. then we deduce from Eq. that

u(ξ) =
bλ

2a(n− 1)
+

v

2a
− bλ2(ξ + c1)

2a(n− 1) [λ(ξ + c1) + 2]
. (2.24)
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b) Example2. The perturbed nonlinear Schrodinger equation with Kerr law nonlinearity.

Case 4. if λ2 − 4µ = 0, µ = 0, λ = 0. then we deduce from Eq. that

u(ξ) =
bλ

2a(n− 1)
+

v

2a
+

b

a(n− 1) [ξ + c1]
. (2.25)

Case 5. if λ2 − 4µ < 0, then we deduce from Eq. that

u(ξ) =
bλ

2a(n− 1)
+

v

2a
+

2bµ

a(n− 1)

[√
4µ− λ2tan(

√
4µ−λ2
2 (ξ + c1))− λ

] . (2.26)

(a)Eq.(3.22) (b) Eq.(3.23) (c) Eq.(3.24)

(d) Eq.(3.25) (e) Eq.(3.26)

This equation is well-known [34],[35] and has the form:

iut + uxx + α|u|2u+ i
{
γ1uxxx + γ2|u|2ux + γ3(|u|2)xu

}
= 0, (2.27)

where α, γ1, γ2, γ3 are constants such that γ1 is the third order dispersion, γ2 is the nonlinear
dispersion, while γ3 is also a version of nonlinear dispersion [36],[37]. Eq.S1 describes the propa-
gation of optical solitons in nonlinear optical fibers that exhibits a Kerr law nonlinearity. Eq.S1
has been discussed in [35] using the first integral method and in [34] using the modified mapping
method and its extended. Let us now solve Eq.S1 using the exp(−ϕ(ξ))-expansion method. To
this end we seek its traveling wave solution of the form [34],[35]:

u(x, t) = φ(ξ)exp[i(kx− Ωt)], ξ = x− ct, (2.28)
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Figure 1 : solution of Eqs.(3.22)-(3.26)
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γ1φ
′′′

+ (2k − c− 3γ1k
2)φ

′
+ (γ2 + 2γ3)φ

2φ
′

= 0, (2.29)

and
(1− 3γ1k)φ

′′
+ (Ω− k2 + γ1k

3)φ+ (α− γ2k)φ3 = 0. (2.30)

With reference to [34], the two equations (2.29) and (2.30) can be simplified as follows:
Integration Eq.(2.29) and vanishing the constant of integration, we have

γ1φ
′′

+ (2k − c− 3γ1k
2)φ+

1

3
(γ2 + 2γ3)φ

3 = 0, (2.31)

From Eqs.(2.30) and (2.31) we deduce that

γ1
1− 3γ1k

=
2k − c− 3γ1k

2

Ω− k2 + γ1k3
=

1
3(γ2 + 2γ3)

α− γ2k
. (2.32)

From Eq.(2.32), we can obtain k = ω−αγ1
3ωγ1−γ1γ2 , Ω = (1−3γ1k)(2k−c−3γ1k2)

ω + k2 − γ1k
3, where

ω = 1
3γ2 + 2

3γ3. Now, Eq.(2.32) is transformed into the following form:

Aφ
′′

+Bφ+ ωφ3 = 0, (2.33)

where A = γ1 and B = 2k − c − 3γ1k
2. Balancing φ′′ with φ3 yields m = 1. Thus, we get the

same formulas (2.15). Substituting (2.15) and its derivatives into Eq.(2.33) and equating the
coefficients of exp(−mϕ) to zero, we get

2α1A+ ωα3
1 = 0, (2.34)

3λα1A+ 3α0α
2
1ω = 0, (2.35)

Aα1(λ
2 + 2µ) + 3α2

0α1ω +Bα1 = 0, (2.36)

λµα1A+ ωα3
0 +Bα0 = 0 (2.37)

where k , Ω and c are constants,while i =
√
−1. Substituting S2 into Eq.S1 and equating the

real and imaginary parts to zero, we have

Eqs.(2.34)-(2.37) yields

α0 = ∓λ
√
−A
2ω

, α1 = ±
√
−2A

ω
. (2.38)

thus the solution is

u = ∓λ
√
−A
2ω
±
√
−2A

ω
exp(−ϕ) (2.39)

Let us now discuse the following case:
Case 1. if λ2 − 4µ > 0, µ 6= 0. then we deduce from Eq.(2.33) that

u(ξ) = ∓λ
√
−A
2ω
±
√
−2A

ω

 2µ

−
√
λ2 − 4µ tanh

√
λ2−4µ
2 (ξ + c1)− λ

 , (2.40)

Case 2. if λ2 − 4µ > 0, µ = 0. then we deduce from Eq.(2.33) that

u(ξ) = ∓λ
√
−A
2ω
±
√
−2A

ω

[
λ

exp(λξ + c1)− 1

]
, (2.41)
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Case 3. if λ2 − 4µ = 0, µ 6= 0, λ 6= 0. then we deduce from Eq.(2.33) that

u(ξ) = ∓λ
√
−A
2ω
±
√
−2A

ω

[
λ2(ξ + c1)

2(λ(ξ + c1) + 2)

]
. (2.42)

Case 4. if λ2 − 4µ = 0, µ = 0, λ = 0. then we deduce from Eq.(2.33) that

u(ξ) = ∓λ
√
−A
2ω
±
√
−2A

ω

[
1

ξ + c1

]
, (2.43)

Case 5. if λ2 − 4µ < 0, then we deduce from Eq.(2.33) that

u(ξ) = ∓λ
√
−A
2ω

+
v

2a
±
√
−2A

ω

 2µ√
4µ− λ2 tan(

√
4µ−λ2
2 (ξ + c1))− λ

 . (2.44)

(a)Eq.(3.40) (b) Eq.(3.41) (c) Eq.(3.42)

(d) Eq.(3.43)
(e) Eq.(3.44)

III. Conclusions

In this paper, it has been shown that the new exp(−(ϕ))-expansion method is a powerful tool for
the nonlinear evolution equations. we can obtained new and more travelling wave solutions for
the equations above , such as, the nonlinear Burger equation with power law nonlinearity, the
perturbed nonlinear Schrodinger equation with kerr law nonlinearity.. Otherwise, the general
solutions of the ODE have been well known for the researchers. Furthermore, the new method
can be used for many other nonlinear evolution equations.

Figure 2 : solution of Eqs.(3.40)-(3.44)
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